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At BIML, we are interested in “building security in” to machine learning (ML) systems from a 
security engineering perspective. This means understanding how ML systems are designed for 
security, teasing out possible security engineering risks, and making such risks explicit. We are 
also interested in the impact of including an ML system as part of a larger design. Our basic 
motivating question is: how do we secure ML systems proactively while we are designing and 
building them? This architectural risk analysis (ARA) is an important first step in our mission to help 
engineers and researchers secure ML systems.

We present a basic ARA of a generic ML system, guided by an understanding of standard ML 
system components and their interactions. 

Securing a modern ML system must involve diving into the engineering and design of the specific 
ML system itself.  This ARA is intended to make that kind of detailed work easier and more 
consistent by providing a generic baseline and a set of risks to consider.
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Why we Need an ML Risk Analysis at the Architectural Level
Twenty-five years ago when the field of software security was in its infancy, much hullabaloo was made over 
software vulnerabilities and their associated exploits. Hackers busied themselves exposing and exploiting bugs 
in everyday systems even as those systems were being rapidly migrated to the Internet. The popular press 
breathlessly covered each exploit.  Nobody really concerned themselves with solving the underlying software 
engineering and configuration problems since finding and fixing the flood of individual bugs seemed like good 
progress.  This hamster-wheel-like process came to be known as “penetrate and patch.”

After several years of public bug whack-a-mole and debates over disclosure, it became clear that bad software 
was at the heart of computer security and that we would do well to figure out how to build secure software.1:viega 
That was twenty years ago at the turn of the millennium. These days, software security is an important part of any 
progressive security program. To be sure, much work remains to be done in software security, but we really do 
know what that work should be.

Though ML (and AI in general) has been around even longer than computer security, until very recently not much 
attention has been paid to the security of ML systems themselves. Over the last few years, a number of spectacular 
theoretical attacks on ML systems have led to the same kind of breathless popular press coverage that we 
experienced during the early days of computer security. It all seems strikingly familiar. Exploit a bug, hype things up 
in the popular press, lather, rinse, repeat.

We need to do better work to secure our ML systems, moving well beyond attack of the day and penetrate and 
patch towards real security engineering.

In our view at BIML, an architectural risk analysis (ARA) is sorely needed at this stage. An ARA takes a design-
level view of a system and teases out systemic risks so that those risks can be properly mitigated and managed 
as a system is created.2:mcgraw Note that in general an ARA is much more concerned with design tradeoffs and 
solid engineering than it is with particular bugs in a specific system or individual lines of code.  In fact, sloppy 
engineering itself often leads directly security issues of all shapes and sizes. For this reason, we spend some time 
talking about aspects of robustness and reasonable engineering throughout this document.

Our work at BIML is by no means the first work in securing ML systems. Early work in security and privacy of ML has 
taken more of an “operations security” tack focused on securing an existing ML system and maintaining its data 
integrity. For example, in one section of his seminal paper, Nicolas Papernot uses Saltzer and Schroeder’s famous 
security principles3:saltzer to provide an operational perspective on ML security.4:papernot In our view, Papernot’s work 
only begins to scratch the surface of ML security design. 

Following Papernot, we directly addressing Saltzer and Schroeder’s security principles from 1972 (as adapted in 
Building Secure Software by Viega and McGraw in 2001) in Part 2. Our treatment of the principles is more directly 
tied to security engineering than it is to security operations.
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Also of note, our work focuses on “security of ML” as opposed to “ML for security.” That is, we focus our attention 
on helping engineers make sure that their ML system is secure while other work focuses on using ML technology to 
implement security features. This is an important distinction. In some cases these two distinct practices have been 
blurred in the literature when they were (confusingly) addressed simultaneously in the same work.5:barreno  We do 
what we can to focus all of our attention on the security of ML. 

Intended Audience
We have a confession to make.  We mostly did this work for ourselves in order to organize our own thinking about 
security engineering and ML. That said, we believe that what we have produced will be useful to three major 
audience groups: 1) ML practitioners and engineers can use this work to understand how security engineering 
and more specifically the “building security in” mentality can be applied to ML, 2) security practitioners can use 
this work to understand how ML will impact the security of systems they may be asked to secure as well as to 
understand some of the basic mechanisms of ML, and 3) ML security people can use this detailed dive into a 
security engineering mindset to guide security analysis of specific ML systems.

Document Organization
Part One of this document extensively covers a set of 78 risks that we have identified using a generic ML system 
as an organizing concept. To start things off, we provide a list of what we consider the top ten risks in ML systems 
today.  Next we discuss a large set of risks associated with each of nine components of a generic ML system.  Our 
intent is for the long list to be a useful guide for security analysis of specific ML systems.  Because of that intent, the 
list is somewhat dauntingly large, but will be useful when practically applied.  Next we discuss known ML attacks 
and present a simple taxonomy associated with our generic ML model.  We also briefly cover ML system attack 
surfaces.  We end Part One with treatment of system-wide risks.

Part Two of this document is a treatment of Saltzer and Schroeder’s 1972 security principles (as adapted in Building 
Secure Software by Viega and McGraw in 2001). 

You are most welcome to skip around while reading this document, maybe even starting with Part Two. We expect 
Part One will serve as much as a reference document to refer back to as it serves as an exposition.

One last thing before we dive in; this work (and indeed all of security) is just as much about creating resilient and 
reliable ML systems as it is about security.  In our view, security is an emergent property of a system.  No system 
that is unreliable and fragile can be secure. For that reason, a number of the risks we identify and discuss have as 
much to do with solid engineering as they have to do with thwarting specific attacks.
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PART ONE: ML Security Risks

Picking a Target: Generic ML
ML systems come in a variety of shapes and sizes, and frankly each possible ML design deserves its own specific 
ARA. For the purposes of this work, we describe a generic ML system in terms of its constituent components and 
work through that generic system ferreting out risks. The idea driving us is that risks that apply to this generic ML 
system will almost certainly apply in any specific ML system. By starting with our ARA, an ML system engineer 
concerned about security can get a jump start on determining risks in their specific system.

4. learning 
algorithm

 
1. raw data 

in the 
world

8. inference 
algorithm

test
validation
training

3. datasets

5. evaluation 

6. inputs 7. model

9. outputs

2. dataset 
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Figure 1: Components of a generic ML system. Arrows represent information flow.

Figure 1 above shows how we choose to represent a generic ML system.  We describe nine basic components 
that align with various steps in setting up, training, and fielding an ML system: 1) raw data in the world, 2) dataset 
assembly, 3) datasets, 4) learning algorithm, 5) evaluation, 6) inputs, 7) model, 8) inference algorithm, and 9) 
outputs.  Note that in our generic model, both processes and collections are treated as components. Processes —
that is, components 2, 4, 5, and 8—are represented by ovals, whereas things and collections of things—that is, 
components 1, 3, 6, 7, and 9—are represented as rectangles. 
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The nine components of our generic ML model map in a straightforward way into specific ML models.  As an 
example of this kind of mapping, consider Google’s Neural Machine Translation model (GNMT).6:wu  Here is how 
that mapping works:

1. Raw data in the world. GNMT makes use of numerous Google internal datasets for training; 
the sources of these data are not made crystal clear, but Google explicitly mentions Wikipedia 
articles and news sites.

2. Dataset assembly. Raw text is organized into sentence pairs between two languages. Sentences 
are segmented by a model which splits individual words into smaller wordpieces and adds 
special characters to the beginning of each word. (This is the best performing option proposed; 
they also evaluate on word-based, character-based, and a mixed model which only splits out-of-
vocabulary words into a character representation.)

3. Datasets. The parsed text pairs are separated into a training set and test set. 

4. Learning algorithm. At a high level, GNMT’s learning algorithm consists of an Encoder Recurrent 
Neural Network (RNN), an attention module, and a Decoder RNN. 

5. Evaluation. The networks are trained by first applying a maximum-likelihood objective until log 
perplexity converges, and then refined with reinforcement learning. The process continues until 
the model produces consistent BLEU scores for the test set. (BLEU  (an acronym for bilingual 
evaluation understudy) is an algorithm for evaluating the quality of machine-translated text that 
has become a de facto standard.)

6. Inputs. Input to the inference algorithm consists of textual sentences in a particular source 
language.

7. Model. The trained model includes numerous configured hyperparameters and millions of 
learned parameters.  

8. Inference algorithm. GNMT is made accessible through an interface that everyone knows as 
Google Translate.

9. Outputs. Outputs consist of textual sentences in the target language.

Given a specific mapping like this, performing a risk analysis by considering the ML security risks associated with 
each component is a straightforward exercise that should yield fruit.

The Top Ten ML Security Risks
After identifying risks in each component which we describe in detail below, we considered the system as a whole 
and identified what we believe are the top ten ML security risks. These risks come in two relatively distinct flavors, 
both equally valid: some are risks associated with the intentional actions of an attacker; others are risks associated 
with an intrinsic design flaw. Intrinsic design flaws emerge when engineers with good intentions screw things up. 
Of course, attackers can also go after intrinsic design flaws complicating the situation.

The top ten ML security risks are briefly introduced and discussed here.

1. Adversarial examples. Probably the most commonly discussed attacks against machine 
learning have come to be known as adversarial examples.  The basic idea is to fool a machine 
learning system by providing malicious input often involving very small perturbations that 
cause the system to make a false prediction or categorization. Though coverage and resulting 
attention might be disproportionately large, swamping out other important ML risks, adversarial 
examples are very much real.  See [input:1:adversarial examples] below. 
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2. Data poisoning. Data play an outsized role in the security of an ML system.  That’s because 
an ML system learns to do what it does directly from data.  If an attacker can intentionally 
manipulate the data being used by an ML system in a coordinated fashion, the entire system 
can be compromised. Data poisoning attacks require special attention. In particular, ML 
engineers should consider what fraction of the training data an attacker can control and to what 
extent. See [data:1:poisoning] below. 

3. Online system manipulation. An ML system is said to be “online” when it continues to learn 
during operational use, modifying its behavior over time.  In this case a clever attacker can 
nudge the still-learning system in the wrong direction on purpose through system input and 
slowly “retrain” the ML system to do the wrong thing.  Note that such an attack can be both 
subtle and reasonably easy to carry out. This risk is complex, demanding that ML engineers 
consider data provenance, algorithm choice, and system operations in order to properly 
address it.  See [alg:1:online], [inference:1:online], and [data:7:online] below.

4. Transfer learning attack. In many cases in the real world, ML systems are constructed by 
taking advantage of an already-trained base model which is then fine-tuned to carry out a 
more specific task. A data transfer attack takes place when the base system is compromised (or 
otherwise unsuitable), making unanticipated behavior defined by the attacker possible.  See 
[data:2:transfer], [model:1:improper re-use] and [model:2:Trojan] below. 

5. Data confidentiality. Data protection is difficult enough without throwing ML into the mix. One 
unique challenge in ML is protecting sensitive or confidential data that, through training, are 
built right into a model. Subtle but effective extraction attacks against an ML system’s data are 
an important category of risk. See [raw:1:data confidentiality] below. 

6. Data trustworthiness. Because data play an outsize role in ML security, considering data 
provenance and integrity is essential.  Are the data suitable and of high enough quality to 
support ML? Are sensors reliable? How is data integrity preserved? Understanding the nature 
of ML system data sources (both during training and during execution) is of critical importance. 
Data borne risks are particularly hairy when it comes to public data sources (which might be 
manipulated or poisoned) and online models.  See [raw:2:trustworthiness] below.

7. Reproducibility. When science and engineering are sloppy, everyone suffers.  Unfortunately, 
because of its inherent inscrutability and the hyper-rapid growth of the field, ML system 
results are often under-reported, poorly described, and otherwise impossible to reproduce. 
When a system can’t be reproduced and nobody notices, bad things can happen. See 
[alg:2:reproducibility] below. 

8. Overfitting. ML systems are often very powerful. Sometimes they can be too powerful for their 
own good. When an ML system “memorizes” its training data set, it will not generalize to new 
data, and is said to be overfitting. Overfit models are particularly easy to attack. Keep in mind 
that overfitting is possible in concert with online system manipulation and may happen while a 
system is running. See [eval:1:overfitting] below.

9. Encoding integrity. Data are often encoded, filtered, re-represented, and otherwise processed 
before use in an ML system (in most cases by a human engineering group). Encoding integrity 
issues can bias a model in interesting and disturbing ways. For example, encodings that include 
metadata may allow an ML model to “solve” a categorization problem by overemphasizing 
the metadata and ignoring the real categorization problem.  See both [assembly:1:encoding 
integrity], [raw:5:encoding integrity], and [raw:10:metadata] below.
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10. Output integrity. If an attacker can interpose between an ML system and the world, a direct 
attack on output may be possible. The inscrutability of ML operations (that is, not really 
understanding how they do what they do) may make an output integrity attack that much easier 
since an anomaly may be harder to spot. See [output:1:direct] below.

Risks in ML System Components 
In this section we identify and rank risks found in each of the nine components of the generic ML system introduced 
above. Each risk is labeled with an identifier as follows: [<component label>:<risk number>:<descriptor>].  We use 
these labels to cross-reference risks and as shorthand pointers in the rest of the document. After each component’s 
list of risks are a set of controls, some associated with particular risks and others generic.

1. Raw data in the world risks: If we have learned only one thing about ML security over the last few 
months, it is that data play just as important role in ML system security as the learning algorithm 
and any technical deployment details.  In fact, we’ll go out on a limb and state for the record that 
we believe data make up the most important aspects of a system to consider when it comes to 
securing an ML system.

Our usage of the term raw data in this section is all inclusive, and is not limited to training data 
(which for what it’s worth is usually created from raw data). There is lots of other data in an ML 
system, including model parameters, test inputs, and operational data.

Data security is, of course, a non-trivial undertaking in its own right, and all collections of data in an 
ML system are subject to the usual data security challenges (plus some new ones).

Eventually, a fully-trained ML system (whether online or offline) will be presented with new input 
data during operations.  These data must also be considered carefully during system design. 

[raw:1:data confidentiality]  
Preserving data confidentiality in an ML system is more challenging than in a standard computing 
situation. That’s because an ML system that is trained up on confidential or sensitive data will 
have some aspects of those data built right into it through training. Attacks to extract sensitive 
and confidential information from ML systems (indirectly through normal use) are well known.7:shokri 

Note that even sub-symbolic “feature” extraction may be useful since that can be used to hone 
adversarial input attacks.4:papernot

[raw:2:trustworthiness]  
Data sources are not trustworthy, suitable, and reliable. How might an attacker tamper with or 
otherwise poison raw input data? What happens if input drifts, changes, or disappears?8:barreno

[raw:3:storage]  
Data are stored and managed in an insecure fashion. Who has access to the data pool, and why? 
Access controls can help mitigate this risk, but such controls are not really feasible when utilizing 
public data sources. This kind of risk brings to mind early attempts to create mathematically random 
data for cryptographic security through combining sets of inputs that could ultimately be influenced 
by an attacker (such as process id, network packet arrival time, and so on). Needless to say, entropy 
pools controlled by an attacker are low entropy indeed. Ask yourself what happens when an 
attacker controls your data sources.

[raw:4:legal]  
Note that public data sources may include data that are in some way legally encumbered. An 
obvious example is copyrighted material that gets sucked up in a data stream. Another more 
insidious example is child pornography which is never legal. A third, and one of the most interesting 
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legal issues now is that there may be legal requirements to “delete” data (e.g., from a GDPR 
request). What it means to “delete” data from a trained model is challenging to carry out (short 
of retraining the model from scratch from a data set with the deleted data removed, but that is 
expensive and often infeasible). Note that through the learning process, input data are always 
encoded in some way in the model itself during training. That means the internal representation 
developed by the model during learning (say, thresholds and weights) may end up being legally 
encumbered as well.

[raw:5:encoding integrity]  
Raw data are not representative of the problem you are trying to solve with ML. Is your sampling 
capability lossy? Are there ethical or moral implications built into your raw data (e.g., racist or 
xenophobic implications can be trained right into some facial recognition systems if data sets are 
poorly designed)?9:phillips

[raw:6:representation]  
Representation plays a critical role in input to an ML system. Carefully consider representation 
schemes, especially in cases of text, video, API, and sensors. Is your representation rich enough 
to do what you want it to do? For example, many encodings of images are compressed in a lossy 
manner. This will impact your model, figure out how. 

[raw:7:text encoding]  
Text representation schemes are not all the same. If your system is counting on ASCII and it gets 
Unicode, what happens? Will your system recognize the incorrect encoding and fail gracefully or 
will it fail hard due to a misinterpreted mismatch?

[raw:8:looping]  
Model confounded by subtle feedback loops. If data output from the model are later used as input 
back into the same model, what happens? Note that this is rumored to have happened to Google 
translate in the early days when translations of pages made by the machine were used to train the 
machine itself. Hilarity ensued. To this day, Google restricts some translated search results through 
its own policies.

[raw:9:data entanglement]  
Entangled data risk. Always note what data are meant to represent and be cognizant of data 
entanglement. For example, consider what happens if a public data source (or even an internal 
source from another project) decides to recode their representation or feature set. Note that “false 
features” can also present an entanglement problem as the famous husky-versus-wolf classifier 
demonstrated by acting (incorrectly) as a snow detector instead of a species detector. Know which 
parts of your data can change and which should not ever change.10:sculley

[raw:10:metadata]  
Metadata may help or hurt an ML model. Make note of metadata included in a raw input dataset. 
Metadata may be a “hazardous feature” which appears useful on the face of it, but actually 
degrades generalization. Metadata may also be open to tampering attacks that can confuse 
an ML model.11:ribeiro More information is not always helpful and metadata may harbor spurious 
correlations. Consider this example: we might hope to boost performance of our image classifier 
by including exif data from the camera. But what if it turns out our training data images of dogs are 
all high resolution stock photos but our images of cats are mostly facebook memes? Our model will 
probably wind up making decisions based on metadata rather than content.

[raw:11:time]  
If time matters in your ML model, consider time of data arrival a risk. Network lag is something 
easily controlled by an attacker. Plan around it. 
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[raw:12:sensor]  
Always consider the technical source of input, including whether the expected input will always be 
available. Is the sensor you are counting on reliable? Sensor blinding attacks are one example of a 
risk faced by poorly designed input gathering systems. Note that consistent feature identification 
related to sensors is likely to require human calibration.

[raw:13:utility]  
If your data are poorly chosen or your model choice is poor, you may reach incorrect conclusions 
regarding your ML approach. Make sure your methods match your data and your data are properly 
vetted and monitored. Remember that ML systems can fail just as much due to data problems as 
due to poorly chosen or implemented algorithms, hyperparameters, and other technical system 
issues.

Associated controls. Note that the labels refer to the original risks (above) which have controls that 
may help alleviate some of the risk directly:

[raw:generic] Protect your data sources if you can.

[raw:generic] Sanity check your data algorithmically before you feed it into your model (e.g., using 
outlier detection, mismatched unit discovery, data range distribution analysis, and so on).  For 
example, make sure that your data properly characterize and represent the problem space so 
that the ML model learns what it is supposed to learn.  Ironically, this is one of the most difficult 
engineering problems involved in ML as a field.

[raw:generic] Transform your data to preserve data integrity. This might even involve cryptographic 
protection.

[raw:generic] Featurize your data so that it is consistently represented. Note that this cuts against 
the grain of some aspects of “deep learning” (mostly because it turns out to be an exercise for 
the humans), but may result in a more robust ML system. The tension here is a classic issue in 
ML. Humans are almost always in the loop, carefully massaging data and setting up the problem 
and the technology to solve the problem. But at the same time the tendency to let an ML system 
“magically” do its work is often over-emphasized. Finding the right balance is tricky and important.

[raw:generic] Use version control technology to manage your datasets. Carefully track change logs, 
diffs, etc, especially when it comes to large datasets.

[raw:1:data confidentiality] Design your ML system so that data extraction from the model is 
expensive. Consider whether there are mathematical properties of the raw input space that lend 
themselves to particular models (let that help guide choice of model).

[raw:6:representation] Manual review of representation and periodic validation is a good thing. 
Consider what is thrown out or approximated (sometimes for computational reasons) in your data 
representation and account for that.

[raw:8:looping] Look for loops in data streams and avoid them. If raw data come from public 
sources and system output is also made public, loops may arise without your awareness.  As an 
example, consider what happens when a machine translation system starts using its own translations 
as training data (as once happened to Google Translate). 

[raw:12:sensor] Sensor risks can be mitigated with correlated and overlapping sensors that build 
and maintain a redundant data stream.
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2. Dataset assembly risks: In order to be processed by a learning algorithm, raw input data often 
must be transformed into a representational form that can be used by the machine learning 
algorithm.  This “pre-processing” step by its very nature impacts the security of an ML system since 
data play such an essential security role.

Of special note in this component is the discrepancy between online models and offline models 
(that is, models that are continuously trained and models that are trained once and “set”). Risks in 
online models drift, and risks in offline models impact confidentiality.

[assembly:1:encoding integrity]  
Encoding integrity issues noted in [raw:5:encoding integrity] can be both introduced and 
exacerbated during pre-processing. Does the pre-processing step itself introduce security 
problems? Bias in raw data processing can impact ethical and moral implications.  Normalization of 
Unicode to ASCII may introduce problems when encoding, for example, Spanish improperly, losing 
diacritics and accent marks.

[assembly:2:annotation]  
The way data are “tagged and bagged” (or annotated into features) can be directly attacked, 
introducing attacker bias into a system. An ML system trained up on examples that are too specific 
will not be able to generalize well.  Much of the human engineering time that goes into ML is spent 
cleaning, deleting, aggregating, organizing, and just all-out manipulating the data so that it can be 
consumed by an ML algorithm.

[assembly:3:normalize]  
Normalization changes the nature of raw data, and may do so to such an extent that the normalized 
data become exceedingly biased. One example might be an ML system that appears to carry 
out a complex real-world task, but actually is doing something much easier with normalized data. 
Destroying the feature of interest in a dataset may make it impossible to learn a viable solution.

[assembly:4:partitioning]  
When building datasets for training, validation, and testing (all distinct types of data used in ML 
systems), care must be taken not to create bad data partitions. This may include analysis of and 
comparisons between subsets to ensure the ML system will behave as desired. 

[assembly:5:fusion]  
Input from multiple sensors can in some cases help make an ML system more robust. However, 
note that how the learning algorithm chooses to treat a sensor may be surprising.  One of the major 
challenges in ML is understanding how a “deep learning” system carries out its task. Data sensitivity 
is a big risk and should be carefully monitored when it comes to sensors placed in the real world.

[assembly:6:filter]  
An attacker who knows how a raw data filtration scheme is set up may be able to leverage that 
knowledge into malicious input later in system deployment.

[assembly:7:adversarial partitions]  
If an attacker can influence the partitioning of datasets used in training and evaluation, they can in 
some sense practice mind control on the ML system as a whole. It is important that datasets reflect 
the reality the ML system designers are shooting for. Boosting an error rate in a sub-category might 
be one interesting attack. Because some deep learning ML systems are “opaque,” setting up 
special trigger conditions as an attacker may be more easily accomplished through manipulation of 
datasets than through other means.8:barreno
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[assembly:8:random]  
Randomness plays an important role in stochastic systems.  An ML system that is depending on 
Monte Carlo randomness to work properly may be derailed by not-really-random “randomness.” 
Use of cryptographic randomness sources is encouraged. “Random” generation of dataset 
partitions may be at risk if the source of randomness is easy to control by an attacker interested in 
data poisoning.

Associated controls. Note that the labels refer to the original risks (above) which have controls that 
may help alleviate some of the risk directly:

[assembly:generic] Provide data sanity checks that look at boundaries, ranges, probabilities, and 
other aspects of data to find anomalies before they are included in critical datasets.  Consider, for 
example, signal to noise ratio and make sure that it is consistent enough to include data as they are 
assembled.

[assembly:5:fusion] Determine how dirty data from a sensor may become, and control for both that 
and for sensor failure. Using multiple sensors may help, especially if they are not exactly the same 
kind of sensor or modality.

 

3. Datasets risks: Assembled data must be grouped into a training set, a validation set, and a 
testing set.  The training set is used as input to the learning algorithm. The validation set is 
used to tune hyperparameters and to monitor the learning algorithm for overfitting. The test set 
is used after learning is complete to evaluate performance. Special care must be taken when 
creating these groupings in order to avoid predisposing the ML algorithm to future attacks (see 
[assembly:7:adversarial partitions] ). In particular, the training set deeply influences an ML system’s 
future behavior. Attacking an ML system through the training set is one of the most obvious ways to 
throw a monkey wrench into the works.

[data:1:poisoning]  
All of the first three components in our generic model (raw data in the world, dataset assembly, 
and datasets) are subject to poisoning attacks whereby an attacker intentionally manipulates data 
in any or all of the three first components, possibly in a coordinated fashion, to cause ML training 
to go awry. In some sense, this is a risk related both to data sensitivity and to the fact that the data 
themselves carry so much of the water in an ML system.  Data poisoning attacks require special 
attention. In particular, ML engineers should consider what fraction of the training data an attacker 
can control and to what extent.12:alfeld

[data:2:transfer]  
Many ML systems are constructed by tuning an already trained base model so that its somewhat 
generic capabilities are fine-tuned with a round of specialized training. A transfer attack presents 
an important risk in this situation. In cases where the pretrained model is widely available, an 
attacker may be able to devise attacks using it that will be robust enough to succeed against your 
(unavailable to the attacker) tuned task-specific model. You should also consider whether the ML 
system you are fine-tuning could possibly be a Trojan that includes sneaky ML behavior that is 
unanticipated.13:mcgraw

[data:3:disimilarity]  
If training, validation, and test sets are not “the same” from a data integrity, trustworthiness, and 
mathematical perspective, an ML model may appear to be doing something that it is not. For 
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example, an ML system trained up on six categories but only tested against two of the six may 
not ultimately be exhibiting proper behavior when it is fielded. More subtly, if an evaluation set 
is too similar to the training set, overfitting may be a risk. By contrast, when the evaluation set 
is too different from the eventual future inputs during operations, then it will not measure true 
performance. Barreno et al say it best when they say, “Analyzing and strengthening learning 
methods in the face of a broken stationarity assumption is the crux of the secure learning 
problem.”8:barreno

[data:4:storage]  
As in [raw:3:storage], data may be stored and managed in an insecure fashion. Who has access to 
the data pool, and why? Think about [system:8:insider] when working on storage.

[data:5:dataset weak rep]  
Assembling a dataset involves doing some thinking and observation about the resulting 
representation inside the ML model. Robust representations result in fluid categorization behavior, 
proper generalization, and non-susceptibility to adversarial input. As an example, a topic model 
trained on predominantly English input with a tiny bit of Spanish will group all Spanish topics into 
one uniform cluster (globbing all Spanish stuff together).

[data:6:supervisor]  
Some learning systems are “supervised” in a sense that the target result is known by the 
system designers (and labeled training data are available). Malicious introduction of misleading 
supervision would cause an ML system to be incorrectly trained. For example, a malicious 
supervisor might determine that each “tank” in a satellite photo is counted as two tanks. (See also 
[assembly:2:annotation].)

[data:7:online]  
Real time data set manipulation can be particularly tricky in an online network where an attacker can 
slowly “retrain” the ML system to do the wrong thing by intentionally shifting the overall data set in 
certain directions.

Associated controls. Note that the labels refer to the original risks (above) which have controls that 
may help alleviate some of the risk directly:

[data:generic] Try to characterize the statistical overlap between validation and training sets. What 
is best? Document your decisions.

[data:4:disimilarity] Ensure data similarity between the three datasets using mathematical methods. 
Just as in software engineering, where “coding to the test” can lead to robustness issues, poor 
training, testing, and validation data hygiene can seriously damage an ML system.

4. Learning Algorithm risks: In our view, though a learning algorithm lies at the technical heart of each 
ML system, the algorithm itself presents far less of a security risk than the data used to train, test, and 
eventually operate the ML system.  That said, risks remain that are worthy of note.

Learning algorithms come in two flavors, and the choice of one or the other makes a big difference 
from a security perspective.  ML systems that are trained up, “frozen,” and then operated using new 
data on the frozen trained system are called offline systems.  Most common ML systems (especially 
classifiers) operate in an offline fashion. By contrast, online systems operate in a continuous learning 
mode. There is some advantage from a security perspective to an offline system because the online 
stance increases exposure to a number of data borne vulnerabilities over a longer period of time.
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[alg:1:online]  
An online learning system that continues to adjust its learning during operations may drift from its 
intended operational use case. Clever attackers can nudge an online learning system in the wrong 
direction on purpose.

[alg:2:reproducibility]  
ML work has a tendency to be sloppily reported.  Results that can’t be reproduced may lead to 
overconfidence in a particular ML system to perform as desired. Often, critical details are missing 
from the description of a reported model. Also, results tend to be very fragile—often running a 
training process on a different GPU (even one that is supposed to be spec-identical) can produce 
dramatically different results. In academic work, there is often a tendency to tweak the authors’ 
system until it outperforms the “baseline” (which doesn’t benefit from similar tweaking), resulting 
in misleading conclusions that make people think a particular idea is actually good when it wasn’t 
actually improving over simpler, earlier method.

[alg:3:exploit-v-explore]  
Part of the challenge of tuning an ML system during the research process is understanding the 
search space being explored and choosing the right model architecture (and algorithm) to use and 
the right parameters for the algorithm itself. Thinking carefully about problem space exploration 
versus space exploitation will lead to a more robust model that is harder to attack. Pick your 
algorithm with care. As an example, consider whether your system has an over-reliance on gradients 
and may possibly benefit from random restarting or evolutionary learning.

[alg:4:randomness]  
Randomness has a long and important history in security. In particular, Monte Carlo randomness 
versus cryptographic randomness is a concern. When it comes to ML, setting weights and 
thresholds “randomly” must be done with care. Many pseudo-random number generators 
(PRNG) are not suitable for use. PRNG loops can really damage system behavior during learning. 
Cryptographic randomness directly intersects with ML when it comes to differential privacy. Using 
the wrong sort of random number generator can lead to subtle security problems.

[alg:5:blind spots]  
All ML learning algorithms may have blind spots. These blind spots may open an ML system up to 
easier attack through techniques that include adversarial examples.

[alg:6:confidentiality]  
Some algorithms may be unsuited for processing confidential information. For example, using a 
non-parametric method like k-nearest neighbors in a situation with sensitive medical records is 
probably a bad idea since exemplars will have to be stored on production servers. Algorithmic 
leakage is an issue that should be considered carefully.4:papernot

[alg:7:noise]  
Noise is both friend and foe in an ML system. For some problems, raw data input need to be 
condensed and compacted (de-noised). For others, the addition of Gaussian noise during pre-
processing can enhance an ML system’s generalization behavior. Getting this right involves careful 
thinking about data structure that is both explicit and well documented. Amenability to certain 
kinds of adversarial input attack is directly linked to this risk.14:goodfellow
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[alg:8:oscillation]  
An ML system may end up oscillating and not properly converging if, for example, it is using 
gradient descent in a space where the gradient is misleading. 

[alg:9:hyperparameters]  
One of the challenges in the ML literature is an over-reliance on “empirical” experiments to 
determine model parameters and an under-reliance on understanding why an ML system actually 
does what it does.  ML systems have a number of hyperparameters, including, for example, learning 
rate and momentum in a gradient descent system. These parameters are those model settings not 
updated during learning (you can think of them as model configuration settings). Setting and tuning 
hyperparameters is somewhat of a black art subject to attacker influence. If an attacker can twiddle 
hyperparameters (tweaking, hiding, or even introducing them), bad things will happen. (Also see 
[inference:3:hyperparameters].)

[alg:10:hyperparameter sensitivity]  
Oversensitive hyperparameters are riskier hyperparameters, especially if they are not locked in.  
Sensitive hyperparameters not rigorously evaluated and explored can give you a weird kind of 
overfitting. For example, one specific risk is that experiments may not be sufficient to choose good 
hyperparameters. Hyperparameters can be a vector for accidental overfitting. In addition, hard to 
detect changes to hyperparameters would make an ideal insider attack.

[alg:11:parameters]  
In the case of transfer learning (see [data:2:transfer]) an attacker may intentionally post or ship or 
otherwise cause a target to use incorrect settings in a public model. Because of the open nature 
of ML algorithm and parameter sharing, this risk is particularly acute among ML practitioners who 
naively think “nobody would ever do that.”

Associated controls. Note that the labels refer to the original risks (above) which have controls that 
may help alleviate some of the risk directly:

[alg:4:randomness] Have a security person take a look at your use of randomness, even if it seems 
innocuous.

[alg:5:blind spots] Representational robustness (for example word2vec encoding in an NLP system 
versus one-shot encoding) can help combat some blind spot risks.

[alg:6:confidentiality] Know explicitly how the algorithm you are using works. Make sure that your 
choice preserves representational integrity.

[alg:6:confidentiality] Keep a history of queries to your system in a log and review the log to make 
sure your system is not unintentionally leaking confidential information. Be careful how you store 
the log— logging everything can itself introduce a big privacy risk.

[alg:9:hyperparameters] Carefully choose hyperparameters and make notes as to why they are set 
the way they are.  Lock in hyperparameters so that they are not subject to change.

[alg:10:hyperparameter sensitivity] Perform a sensitivity analysis on the set of hyperparameters you 
have chosen.
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5. Evaluation risks: Determining whether an ML system that has been fully trained is actually doing 
what the designers want it to do is a thing. Evaluation data are used to try to understand how well a 
trained ML system can perform its assigned task (post learning). Recall our comments above about 
the important role that stationarity assumptions have in securing ML systems.

[eval:1:overfitting]  
A sufficiently powerful machine is capable of learning its training data set so well that it essentially 
builds a lookup table. This can be likened to memorizing its training data. The unfortunate side 
effect of “perfect” learning like this is an inability to generalize outside of the training set. Overfit 
models can be pretty easy to attack through input since adversarial examples need only be a short 
distance away in input space from training examples. Note that generative models can suffer from 
overfitting too, but the phenomenon may be much harder to spot. Also note that overfitting is also 
possible in concert with [data:6:online].

[eval:2:bad eval data]  
Evaluation is tricky, and an evaluation data set must be designed and used with care.  A bad 
evaluation data set that doesn’t reflect the data it will see in production can mislead a researcher 
into thinking everything is working even when it’s not. Evaluation sets can also be too small or too 
similar to the training data to be useful.8:barreno For more, see Luke Oakden-Rayner’s blog entry “AI 
competitions don’t produce useful models” at https://lukeoakdenrayner.wordpress.com/ (accessed 
10.8.19).

[eval:3:cooking the books]  
In some cases, evaluation data may be intentionally structured to make everything look great even 
when it’s not. 

[eval:4:science]  
Common sense evaluation and rigorous evaluation are not always the same thing. For example, 
evaluation of an NLP system may rely on “bags of words” instead of a more qualitative structural 
evaluation.15:reiter

[eval:5:catastrophic forgetting]  
Just as data play a key role in ML systems, representation of those data in the learned network 
is important. When a model is crammed too full of overlapping information, it may suffer from 
catastrophic forgetting. This risk was much more apparent in the early ‘90s when networks (and 
the CPUs they ran on) were much smaller. However, even a large network may be subject to this 
problem. Online systems are, by design, more susceptible.

[eval:6:choking on big data]  
In an online model, the external data set available may be so vast that the ML system is simply 
overwhelmed. That is, the algorithm may not scale in performance from the data it learned on to 
real data. In online situations the rate at which data comes into the model may not align with the 
rate of anticipated data arrival. This can lead to both outright ML system failure and to a system that 
“chases its own tail.”

[eval:7:data problems]  
Upstream attacks against data make training and its subsequent evaluation difficult.

Associated controls. Note that the labels refer to the original risks (above) which have controls that 
may help alleviate some of the risk directly:

[eval:2:bad eval data] Public data sets with well-known error rates (or generalization rates) may 
combat or help control this risk.

https://lukeoakdenrayner.wordpress.com/
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[eval:2:bad eval data] and [eval:3:cooking the books] are much harder to pull off when the 
evaluation data and results are public. The research literature is beginning to move toward 
reproducible results though release of all ML system code and data.

6. Input risks: When a fully trained model is put into production, a number of risks must be 
considered. Probably the most important set of these operations/production risks revolves around 
input data fed into the trained model. Of course, by design these input data will likely be structured 
and pre-processed similarly to the training data.  Many of the risks identified above (see especially 
raw data in the world risks and data assembly risks) apply to model input almost directly.

[input:1:adversarial examples] One of the most important categories of computer security risks is 
malicious input. The ML version of malicious input has come to be known as adversarial examples. 
While important, adversarial examples have received so much attention that they swamp out all 
other risks in most people’s imagination.16:yuan

[input:2:controlled input stream] A trained ML system that takes as its input data from outside 
may be purposefully manipulated by an attacker. To think about why anybody would bother to do 
this, consider that the attacker may be someone under scrutiny by an ML algorithm (a loan seeker, a 
political dissident, a person to be authenticated, etc).

[input:3:dirty input] The real world is noisy and messy. Input data sets that are dirty enough will be 
hard to process. A malicious adversary can leverage this susceptibility by simply adding noise to the 
world.

[input:4:looped input] If system output feeds back into the real world there is some risk that it may 
find its way back into input causing a feedback loop. Sometimes this even happens with ML output 
data feeding back into training data.

[input:5:pre-processing replication] The same care that goes into data assembly (component 2) 
should be given to input, even in an online situation. This may be difficult for a number of reasons

Associated controls. Note that the labels refer to the original risks (above) which have controls that 
may help alleviate some of the risk directly:

[input:2:controlled input stream] A multi-modal input stream will be harder to completely control. 
One way to carry this out might be to use multiple sensors that are not similarly designed or that 
don’t have the same engineering failure conditions.

[input:3:dirty input] Sanity checks, filters, and data cleaning can control this risk. Of course, those 
mechanisms can be attacked as well. Note that often pre-processing ends up being more about 
making an ML system be able to learn than it is about “getting it right.”

 

7. Model risks: When a fully trained model is put into production, a number of important risks crop 
up. Note that some of the risks discussed in the evaluation risks section above apply directly in this 
section as well (for example, [eval:1:overfitting] and [eval:4:catastrophic forgetting] both apply).

[model:1:improper re-use] ML-systems are re-used intentionally in transfer situations. The risk 
of transfer outside of intended use applies. Groups posting models for transfer would do well to 
precisely describe exactly what their systems do and how they control the risks in this document.
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[model:2:Trojan] Model transfer leads to the possibility that what is being reused may be a 
Trojaned (or otherwise damaged) version of the model being sought out.7:shokri

[model:3:representation fludity] ML is appealing exactly because it flies in the face of brittle 
symbolic AI systems. When a model generalizes from some examples, it builds up a somewhat 
fluid representation if all goes well. The real trick is determining how much fluidity is too much. 
Representation issues are some of the most difficult issues in ML, both in terms of primary input 
representation and in terms of internal representation and encoding.  Striking a balance between 
generalization and specificity is the key to making ML useful.

[model:4:training set reveal] Most ML algorithms learn a great deal about input, some of which 
is possibly sensitive (see [raw:1:data confidentiality]), and store a representation internally that may 
include sensitive information. Algorithm choice can help control this risk, but be aware of the output 
your model produces and how it may reveal sensitive aspects of its training data. When it comes 
to sensitive data, one promising approach in privacy-preserving ML is differential privacy which we 
discuss below.

[model:5:steal the box] Training up an ML system is not free. Stealing ML system knowledge is 
possible through direct input/output observation.  This is akin to reversing the model.

Associated controls. Note that the labels refer to the original risks (above) which have controls that 
may help alleviate some of the risk directly:

[model:5:steal the box] Watch the output that you provide (it can and will be used against you).

8. Inference algorithm risks: When a fully trained model is usually put into production, a number of 
important risks must be considered. These encompass data fed to the model during operations (see 
raw data risks and pre-processing risks), risks inherent in the production model, and output risks.

[inference:1:online] A fielded model operating in an online system (that is, still learning) can be 
pushed past its boundaries. An attacker may be able to carry this out quite easily.

[inference:2:inscrutability] In far too many cases, an ML system is fielded without a real 
understanding of how it works or why it does what it does. Integrating an ML system that “just 
works” into a larger system that then relies on the ML system to perform properly is a very real risk. 

[inference:3:hyperparameters] Inference algorithms have hyperparameters, for example sampling 
temperature in a generative model. If an attacker can surreptitiously modulate the hyperparameters 
for the inference algorithm after the evaluation process is complete, they can control the system’s 
behavior. (Also see [alg:9:hyperparameters].) 

[inference:3:confidence scores] In many cases, confidence scores (which are paired with 
classification category answers) can help an attacker. If an ML system is not confident about its 
answer and says so, that provides feedback to an attacker with regards to how to tweak input to 
make the system misbehave. Conversely, a system that doesn’t return confidence scores is much 
harder to use correctly (and may be used idiotically). Care should be taken as to what kind of output 
feedback a user can and should get.

[inference:4:hosting] Many ML systems are run on hosted, remote servers. Care must be taken 
to protect these machines against ML-related attacks (not to mention the usual pile of computer 
security stuff).

[inference:5:user risk] When a user decides to use an ML system that is remote, they expose their 
interests (and possibly their input) to the owners of the ML system.
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Associated controls. Note that the labels refer to the original risks (above) which have controls that 
may help alleviate some of the risk directly:

[inference:1:online] An ML system in production can be refreshed to a known state, reset, or 
otherwise “cleaned” periodically. This can limit the window for online attack.

[inference:3:hosting] Take care to isolate engineering ML systems from production systems. 
Production systems in particular should be properly hardened and monitored.

9. Output risks: Keep in mind that the entire purpose of creating, training, and evaluating a model 
may be so that its output serves a useful purpose in the world. The second most obvious direct 
attack against an ML system will be to attack its output.

[output:1:direct] An attacker tweaks the output stream directly. This will impact the larger system 
in which the ML subsystem is encompassed. There are many ways to do this kind of thing.  Probably 
the most common attack would be to interpose between the output stream and the receiver. 
Because models are sometimes opaque, unverified output may simply be used with little scrutiny, 
meaning that an interposing attacker may have an easy time hiding in plain sight.

[output:2:provenance] ML systems must be trustworthy to be put into use. Even a temporary or 
partial attack against output can cause trustworthiness to plummet.

[output:3:miscategorization] Adversarial examples (see [input:1:adversarial examples]) lead to 
fallacious output. If those output escape into the world undetected, bad things can happen.

[output:4:inscrutability] In far too many cases with ML, nobody is really sure how the trained 
systems do what they do. This is a direct affront on trustworthiness and can lead to challenges in 
some domains such as diagnostic medicine.

[output:5:transparency] Decisions that are simply presented to the world with no explanation are 
not transparent. Attacking opaque systems is much easier than attacking transparent systems, since 
it is harder to discern when something is going wrong.

[output:6:eroding trust] Causing an ML system to misbehave can erode trust in the entire 
discipline. A GAN that produces uncomfortable sounds or images provides one example of how 
this might unfold.17:shane

[output:7:looped output] See [input:4:looped input]. If system output feeds back into the real 
world there is some risk that it may find its way back into input causing a feedback loop.
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Figure 2: Known attacks and attack surfaces on ML systems. Manipulation attacks are pictured in 
red at the site of attack: (1) data manipulation. (2)  input manipulation. (3) model manipulation. 

Extraction attacks are pictured in blue, showing the flow of information: (4) data extraction. 
(5) input extraction. (6) model extraction. Attack surfaces roughly correspond to gray plates: 

deployment, engineering, and data sources.
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Mapping Known Attacks to our Model
In this section we briefly consider direct attacks on ML algorithms. See Figure 2. These attacks are 
closely related to the security risks we have enumerated above, but they are not the same. Attacks 
are distinct in that they may leverage multiple risks. You can think of a specific attack as a coordinated 
exploit of a set of risks that results in system compromise. For the most part we will ignore attacks on 
ML infrastructure or attacks that specifically circumvent ML-based defense.

We classify attacks on ML systems based on how and where (and to some degree when) the system 
is compromised. An attack may manipulate the behavior (attacking operational integrity) or extract 
information (attacking confidentiality). Additionally attacks can affect the training data, run-time inputs, 
and the model used for inference. Attacks can disrupt both the engineering stages of developing an 
ML system as well as a deployed ML system. The two axes of how and where a system is compromised 
lead to a taxonomy with six categories:

(1) Data manipulation, also called a “poisoning”18:kloft or “causative” attack is a manipulation 
attack via the training process.5:barreno An attacker modifies a data corpus used to train an ML 
system in order to impair or influence the system’s behavior. For example, an attacker may 
publish bogus data to influence financial time-series forecasting models19:alfeld  or interfere with 
medical diagnoses.20:mozzaffari-kermani

(2) Input manipulation, including by “adversarial examples,” is a manipulation attack on an 
ML model at inference time (or test time).14:goodfellow In this case, an attacker concocts an input 
to an operating ML system which reliably produces a different output than intended. Examples 
include a stop sign being classified as a speed limit sign;21:eykholt a spam email being classified as 
not spam;22:biggio or a vocal utterance being transcribed as an unrelated text.23:carlini (For a survey 
of input manipulation techniques on deep learning and classical ML systems see [Yuan19]16:yuan 
and [Biggio13]22:biggio, respectively.) Note that in the online setting, runtime inputs and training 
data may not be distinct. However, we can say that input manipulation compromises behavior 
toward the malicious input, while data manipulation compromises behavior toward future 
inputs—the methods of attack and the security implications are distinct.

(3) Model manipulation, also called “backdooring”24:gu or a “supply chain” attack occurs when 
an attacker publishes a model with certain latent behavior, to be unwittingly adopted by third 
parties and later exploited by the attacker.25:kumar It is common in the deep learning community 
to release models under a permissive open source license; given the prevalence of code reuse 
and transfer learning we believe this potential attack and defenses against it deserves greater 
scrutiny. 

(4) Data Extraction, commonly called “inference attacks” (including membership inference, 
attribute inference, and property inference) and also sometimes called “model inversion,” is 
when an attacker extracts details of the data corpus an ML model was trained on by querying 
the model or inspecting it directly.26:ateniese  Research in deep learning often focuses on the model 
to the exclusion of the data, yet data are known to be crucially important to a trained system’s 
behavior. Though research is often conducted on public datasets, real-world ML systems involve 
proprietary data with serious privacy implications. 

(5) Input extraction, sometimes also called “model inversion” applies in cases where 
model outputs are public but inputs are secret; an attacker attempts to recover inputs 
from outputs.27:fredrikson For example, inferring features of medical records from the dosage 
recommended by an ML model,27:fredrikson or producing a recognizable image of a face given only 
the identity (classification in a face-recognition model) and confidence score.28:wang 
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(6) Model extraction occurs when an attacker targets a less-than-fully-white-box ML system, 
attempting to “open the box” and copy its behavior or parameters. Model extraction may 
function as theft of a proprietary model or may enable white-box attacks on a formerly black-
box model.29:papernot,30:gilmer 

Complementing and contrasting with our taxonomy, NIST recently published a draft taxonomy of 
adversarial machine learning (AML) which aims to create a taxonomy not just of attacks, but also defenses 
and consequences.31:tabassi At the top level they consider three categories of attack target (physical, digital 
representation, or ML approach), attack techniques, and knowledge that the attacker may have of the system being 
attacked.

Overall, the NIST taxonomy and terminology glossary are helpful navigational tools for current literature on AML. 
Our taxonomy of ML attacks is more focused on practitioners trying to secure an ML system. As such, it is directly 
grounded on a simpler model for an ML system and more directly describes established categories of system 
compromise. This makes our taxonomy much simpler, with a clear focus on where and how the system is attacked 
while still taking into consideration other basic categories in the NIST draft. For example, we find that the our 
dimension of a how a system is compromised maps effectively to the NIST draft sense of consequence. We also 
find that our six category approach is straightforward to specialize to specific ML approaches and systems as 
covered in the targets branch of the NIST taxonomy. Thus we can easily apply our approach of where and how to 
the various modalities of ML such as supervised, unsupervised, and reinforcement learning.

Attack Surface Estimation 
In security, an attack surface us defined as the sum of different locations in a system where an attacker can try to 
manipulate input, directly impact system processing, or extract data. Keeping a system’s attack surface as small as 
possible is a basic security measure.

Practically, we identify three main attack surfaces for ML systems: deployment, engineering, and data sources. See 
Figure 2.

Deployment is the most straightforward surface to attack, comprising the inference software and model itself. A 
deployed ML system includes supporting hardware and software (e.g. web servers); an attacker can typically study 
an API or hardware device at length to develop an attack. Roughly, the bottom plate in our diagram corresponds to 
deployment, but note that this distinction is less appropriate in the online learning regime. Conventional computer 
security is important here, as is understanding how information leaks between model, input, and output.

The ML engineering process is more remote from the system’s behavior yet fully determines it. Sensitive data may 
be most exposed during the engineering process. Roughly, this is the upper plate in Figure 2, though note that the 
inference algorithm and model are what move from engineering to deployment. Operational security is important 
here.

Data sources are still more remote from an ML system’s behavior but may be particularly easy for an attacker to 
manipulate undetected. Attacks on data sources should be anticipated when collecting and assembling datasets.

System-Wide Risks and Broad Concerns
To this point, our coverage of ML security risks has been confined to a component-based view.  In addition to risks 
grounded in components, there are a number of system-wide risks that emerge only at the system level or between 
and across multiple components.  We identify and discuss system-wide risks here:
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[system:1:black box discrimination]  
Many data-related component risks lead to bias in the behavior of an ML system. ML systems 
that operate on personal data or feed into high impact decision processes (such as credit scoring, 
employment, and medical diagnosis decisions) pose a great deal of risk. When biases are aligned 
with gender, race, or age attributes, operating the system may result in discrimination with respect 
to one of these protected classes. Using biased ML subsystems is is definitely illegal in some 
contexts, may be unethical, and is always irresponsible. 

[system:2:overconfidence]  
When an ML system with a particular error behavior is integrated into a larger system and its 
output is treated as high confidence data, users of the system may become overconfident in the 
operation of the system for its intended purpose. A low scrutiny stance with respect to the overall 
system makes it less likely that an attack against the ML subsystem will be detected. Developing 
overconfidence in ML is made easier by the fact that ML systems are often poorly understood and 
vaguely described. (See [output:5:transparency].)

[system:3:loss of confidence]  
Any ML system can and will make mistakes. For example, there are limitations to how effective the 
prediction of a target variable or class can be given certain input. If system users are unaware of the 
subtleties of ML, they may not be able to account for “incorrect” behavior.  Lost confidence may 
follow logically. Ultimately, users may erroneously conclude that the ML system is not beneficial to 
operation at all and thus should be disregarded. In fact the ML system may operate on average 
much more effectively than other classifying technology and may be capable of scaling a decision 
process beyond human capability. Throwing out the baby with the bathwater is an ML risk. As an 
example, consider what happens when self-driving cars kill pedestrians.

[system:4:public perception]  
Confidence related risks such as [system:2:overconfidence] and [system:3:loss of confidence] are 
focused on the impact that common ML misunderstandings have on users of a system. Note that 
such risks can find their way out into society at large with impacts on policy-making (regarding 
the adoption or role of ML technologies) and the reputation of a company (regarding nefarious 
intentions, illegality, or competence).  A good example is the Microsoft chatbot, Tay, which learned 
to converse by parsing raw twitter content and ultimately exhibited racist, xenophobic, and sexist 
behavior as a result.  Microsoft pulled the plug on Tay. Tay was a black eye for ML in the eyes of the 
public.32:jagielski

[system:5:error propagation] 
When ML output becomes input to a larger decision process, errors arising in the ML subsystem 
may propagate in unforeseen ways. For example, a classification decision may end up being treated 
as imputed metadata or otherwise silently impact a conditional decision process. The evaluation of 
ML subsystem performance in isolation from larger system context may not take into account the 
“regret” this may incur.  That is, methods that evaluate ML accuracy may not evaluate utility, leading 
to what has been called regret in the ML literature.

[system:6:cry wolf] 
When an ML subsystem operating within a larger system generates too many alarms, the subsystem 
may be ignored. This is particularly problematic when ML is being applied to solve a security 
problem like intrusion or misuse detection. False alarms may discourage users from paying 
attention, rendering the system useless.
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[system:7:data integrity]  
If ML system components are distributed, especially across the Internet, preserving data integrity 
between components is particularly important. An attacker in the middle who can tamper with data 
streams coming and going from a remote ML component can cause real trouble.

[system:8:insider] 
As always in security, a malicious insider in an ML system can wreak havoc. Note for the record 
that data poisoning attacks (especially those that subtly bias a training set) can already be hard to 
spot. A malicious insider who wishes not to get caught would do well to hide in the data poisoning 
weeds.

[system:9:API encoding] 
Data may be incorrectly encoded in a command, or vice versa. When data and API information 
are mixed, bad things happen in security. Know that APIs are a common attack target in security 
and are in some sense your public front door. How do you handle time and state? What about 
authentication? 

[system:10:denial of service]  
Denial of service attacks have broad impact when service access impacts a decision process.  When 
an ML system fails, recovery may not be possible. If you decide to rely entirely on an ML system that 
fails, recovery may not be possible, even if all of the data that feed the ML system are still around.
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PART TWO: ML Security Principles

Security Principles and Machine Learning
In security engineering it is not practical to protect against every type of possible attack. Security engineering is an 
exercise in risk management. One approach that works very well is to make use of a set of guiding principles when 
designing and building systems. Good guiding principles tend to improve the security outlook even in the face of 
unknown future attacks. This strategy helps to alleviate the “attack-of-the-day” problem so common in early days 
of software security (and also sadly common in early approaches to ML security). 

In this section we present ten principles for ML security lifted directly from Building Secure Software and adapted 
for ML.1:viega The goal of these principles is to identify and to highlight the most impor tant objectives you should 
keep in mind when designing and building a secure ML system. Following these principles should help you avoid 
lots of  common security problems. Of course, this set of principles will not be able to cover every possible new flaw 
lurking in the future. 

Some caveats are in order. No list of principles like the one pre sented here is ever perfect. There is no guarantee 
that if you follow these principles your ML system will be secure. Not only do our principles present an incomplete 
picture, but they also sometimes conflict with each other. As with any complex set of principles, there are often 
subtle tradeoffs involved. 

Clearly, application of these ten principles must be sensitive to context. A mature risk management approach to ML 
provides the sort of data required to apply these principles intelligently.

Principle 1: Secure the Weakest Link

Principle 2: Practice Defense in Depth

Principle 3: Fail Securely

Principle 4: Follow the Principle of Least Privilege

Principle 5: Compartmentalize

Principle 6: Keep It Simple

Principle 7: Promote Privacy

Principle 8: Remember That Hiding Secrets Is Hard

Principle 9: Be Reluctant to Trust

Principle 10: Use Your Community Resources

What follows is a treatment of each of the ten principles from an ML systems engineering perspective.
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Principle 1: Secure the Weakest Link
Security people are quick to point out that security is like a chain.  And just as a chain is only as strong as the 
weakest link, an ML system is only as secure as its weakest component.  Want to anticipate where bad guys will 
attack your ML system?  Well, think through which part would be easiest to attack and what the attacker’s goals 
might be. What really matters is the easiest way for the attacker to achieve those goals. For a first stab at attack 
surface analysis, see Figure 2 and the associated text above.

ML systems are different from many other artifacts that we engineer because the data in ML are just as important 
(or sometimes even more important) as the learning mechanism itself.  That means we need to pay much more 
attention to the data used to train, test, and operate an ML system than we might in a standard system.

In some sense, this turns the idea of an attack surface on its head. To understand what we mean, consider that the 
training data in an ML system may often come from a public location —that is, one that may be subject to poor 
data protection controls.  If that’s the case, perhaps the easiest way to attack an ML system of this flavor would be 
through polluting or otherwise manipulating the data before they even arrive. An attacker wins if they get to the 
ML-critical data before the ML system even starts to learn.  Who cares about the public API of the trained up and 
operating ML system if the data used to build it were already maliciously constructed?

Thinking about ML data as money makes a good exercise.  Where does the “money” (that is, data) in the system 
come from?  How is it stored?  Can counterfeit money help in an attack? Does all of the money get compressed 
into high value storage in one place (say the weights and thresholds learned in the ML systems’ distributed 
representation)?  How does money come out of an ML system?  Can money be transferred to an attacker?  How 
would that work?

Let’s stretch this analogy even farther. When it comes to actual money, a sort of perverse logic pervades the 
physical security world. There’s generally more money in a bank than a convenience store, but which one is more 
likely to be held up? The convenience store, because banks tend to have much stronger security precautions. 
Convenience stores are a much easier target. Of course the payoff for successfully robbing a convenience store is 
much lower than knocking off a bank, but it is probably a lot easier to get away from the convenience store crime 
scene. In terms of our analogy, you want to look for and better defend the convenience stores in your ML system.

ML has another weird factor that is worth considering—that is that much of the source code is open source and re-
used all over the place.  Should you trust that algorithm that you snagged from github?  How does it work? Does it 
protect those oh so valuable data sets you built up?  What if the algorithm itself is sneakily compromised?  These 
are some potential weak links that may not be considered in a traditional network security stance.

Identifying the weakest component of a system falls directly out of a good risk analysis. Given good risk analysis 
information, addressing the most serious risk first, instead of a risk that may be easiest to mitigate, is always 
prudent. Security resources should be doled out according to risk. Deal with one or two major problems, and 
move on to the remaining ones in order of severity. You can make use of the ML security risks we identify in this 
document as a starting point for an in-depth analysis of your own system.

Of course, this strategy can be applied forever, because 100% security is never attainable. There is a clear need for 
some stopping point. It is okay to stop addressing risks when all components appear to be within the thresh old of 
acceptable risk. The notion of acceptability depends on the business propo sition.

All of our analogies aside, good security practice dictates an approach that identifies and strengthens weak links 
until an acceptable level of risk is achieved.
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Principle 2: Practice Defense in Depth
The idea behind defense in depth is to manage risk with diverse defensive strategies (sometimes called controls), 
so that if one layer of defense turns out to be inadequate, another layer of defense hopefully prevents a full breach.

Let’s go back to our example of bank security. Why is the typical bank more secure than the typical convenience 
store? Because there are many redundant security measures protecting the bank, and the more measures there are, 
the more secure the place is.

Security cameras alone are a deterrent for some. But if people don’t care about the cameras, then a security guard 
is there to defend the bank physi cally with a gun. Two security guards provide even more protection. But if both 
security guards get shot by masked bandits, then at least there’s still a wall of bulletproof glass and electronically 
locked doors to protect the tellers from the robbers. Of course if the robbers happen to kick in the doors, or guess 
the code for the door, at least they can only get at the teller registers, because the bank has a vault protecting 
the really valuable stuff. Hopefully, the vault is protected by several locks and cannot be opened without two 
individuals who are rarely at the bank at the same time. And as for the teller registers, they can be protected by 
having dye-emitting bills stored at the bottom, for distribution during a robbery.

Of course, having all these security measures does not ensure that the bank is never successfully robbed. Bank 
robberies do happen, even at banks with this much security. Nonetheless, it’s pretty obvious that the sum total of 
all these defenses results in a far more effective security system than any one defense alone.

The defense-in-depth principle may seem somewhat contradictory to the “secure-the-weakest-link” principle 
because we are essentially saying that defenses taken as a whole can be stronger than the weakest link. How-
ever, there is no contradiction. The principle “secure the weakest link” applies when components have security 
functionality that does not overlap. But when it comes to redundant security measures, it is indeed possible that 
the sum protection offered is far greater than the protection offered by any single component.

ML systems are constructed out of numerous components. And, as we pointed out multiple times above, the 
data are often the most important thing from a security perspective. This means that bad actors have as many 
opportunities to exploit an ML system as there are components, and then some. Each and every component comes 
with a set of risks, and each and every one of them needs to address those risks head on.  But wait, there’s more. 
Defense in depth teaches that vulnerabilities not addressed by one component should be caught by another. In 
some cases a risk may be controlled “upstream” and in others “downstream.”  

Let’s think about how defense in depth impacts the goal of securing training data in an ML system.  A straight-
forward security approach will attempt to secure sensitive training data behind some kind authentication and 
authorization system, only allowing the model access to the data while it is actually training.  This may well be a 
reasonable and well-justified practice, but it is by no means sufficient to ensure that no sensitive information in the 
training data can be leaked through malicious misuse/abuse of the system as a whole. Here’s why. Through the 
training process itself, the training data come to be represented in the model itself.33:Fredrikson That means getting 
to sensitive data through the model is a risk. Some ML models are vulnerable to leaking sensitive information via 
carefully selected queries made to the operating model itself. In other cases, lots of know-how in “learned” form 
may be leaked through a transfer attack. A second line of defense against these kind of “through the model” 
attacks against training data might be to anonymize the dataset so that particularly sensitive aspects of the data are 
not exposed even through the model.
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Maintaining a history of queries made by users, and preventing subsequent queries that together could be used to 
divine sensitive information can serve as an additional defensive layer that protects against these kinds of attack.

Practicing defense in depth naturally involves applying the principle of least privilege to users and operations 
engineers of an ML system. Identifying and preventing security exploits is much easier when every component 
limits its access to only those resources it actually requires.  In this case, identifying and separating components in 
a design can help, because components become natural trust boundaries where controls can be put in place and 
policies enforced.

Defense in depth is especially powerful when each component works in concert with the others.

Principle 3: Fail Securely
Even under ideal conditions, complex systems are bound to fail eventually. Failure is an unavoidable state that 
should always be planned for. From a security perspective, failure itself isn’t the problem so much as the tendency 
for many systems to exhibit insecure behavior when they fail.

ML systems are particularly complicated (what with all that dependence on data) and are prone to fail in new 
and spectacular ways. Consider a system that is meant to classify its input.  In a very straightforward way, failure 
in a classifier would constitute giving the wrong answer (e.g., incorrectly reporting that a cat is a tank). What 
should an ML system do?  Maybe it should emit no answer if confidence is low. Or maybe it can flag inaccurate 
or iffy classifications like this, through say emitting a confidence score.  Reporting a confidence score seems like 
not such a bad thing to do from an engineering perspective. But in some cases, simply reporting what an ML 
system got wrong or was underconfident about can lead to security vulnerability. As it turns out, attackers can 
exploit misclassification to create adversarial examples,30:gilmer or use a collection of errors en masse to ferret out 
confidential information used to train the model.7:shokri In general, ML systems would do well to avoid transmitting 
low-confidence classification results to untrusted users in order to defend against these attacks, but of course that 
seriously constrains the usual engineering approach.  This is a case in which failing securely is much more subtle 
than it may seem at first blush.

Classification results should only be provided when the system is confident that they are correct. In the case of 
either a failure or a low confidence result, care must be taken that any feedback from the model to a malicious user 
can’t be exploited. Note that many ML models are capable of providing confidence levels along with their other 
output to address some of these risks.  That certainly helps when it comes to understanding the classifier itself, but 
it doesn’t really address information exploit or leakage (both of which are more challenging problems). ML system 
engineers should carefully consider the sensitivity of their systems’ predictions and take into account the amount of 
trust they afford the user when deciding what to report.

If your ML system has to fail, make sure that it fails securely.

Principle 4: Follow the Principle of Least Privilege
The principle of least privilege states that only the minimum access necessary to perform an operation should be 
granted, and that access should be granted only for the minimum amount of time necessary.3:saltzer

When you give out access to parts of a system, there is always some risk that the privileges associated with that 
access will be abused. For example, let’s say you are to go on vacation and you give a friend the key to your home, 
just to feed pets, collect mail, and so forth. Although you may trust the friend, there is always the possibility that 
there will be a party in your house without your consent, or that something else will happen that you don’t like. 
Regardless of whether you trust your friend, there’s really no need to put yourself at risk by giving more access than 
necessary. For ex ample, if you don’t have pets, but only need a friend to pick up the mail on occasion, you should 
relinquish only the mailbox key. Although your friend may find a good way to abuse that privilege, at least you 
don’t have to worry about the possibility of additional abuse. If you give out the house key unnecessarily, all that 
changes.
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Similarly, if you do get a house sitter while you’re on vacation, you aren’t likely to let that person keep your keys 
when you’re not on vacation. If you do, you’re setting yourself up for additional risk. Whenever a key to your house 
is out of your control, there’s a risk of that key getting duplicated. If there’s a key outside your control, and you’re 
not home, then there’s the risk that the key is being used to enter your house. Any length of time that someone has 
your key and is not being supervised by you constitutes a window of time in which you are vulnerable to an attack. 
You want to keep such windows of vulnerability as short as possible—to minimize your risks.

In an ML system, we most likely want to control access around lifecycle phases. In the training phase, the system 
may have access to lots of possibly sensitive training data.  Assuming an offline model (where training is not 
continuous), after the training phase is complete, the system should no longer require access to those data. (As we 
discussed when we were talking defense in depth, system engineers need to understand that in some sense all of 
the confidential data are now represented in the trained-up ML system and may be subject to ML-specific attacks.)

Thinking about access control in ML is useful and can be applied through the lens of the principle of least privilege, 
particularly between lifecycle phases and system components. Users of an ML system are not likely to need access 
to training data and test data, so don’t give it to them. In fact, users may only require black box API access to a 
running system.  If that’s the case, then provide only what is necessary in order to preserve security.

Less is more when it comes to the principle of least privilege. Limit data exposure to those components that require 
it and then grant access for as short a time period as possible.

Principle 5: Compartmentalize
The risk analysis of a generic ML system we provide in this document uses a set of nine “components” to help 
categorize and explain risks found in various logical pieces (see Figure 1).  Components can be either processes 
or collections. Just as understanding a system is easier when a system is divided up into pieces, controlling 
security risk is easier when the pieces themselves are each secured separately.  Another way of thinking about 
this is to compare old fashioned “monolithic” software design to “micro-services” design.  In general, both 
understanding and securing a monolith is much harder than securing a set of services (of course things get tricky 
when services interact in time, but we’ll ignore that for now).  In the end we want to eradicate the monolith and use 
compartmentalization as our friend.

Let’s imagine one security principle and see how compartmentalization can help us think it through.  Part of the 
challenge of applying the principle of least privilege in practice (described above) has to do with component size 
and scope.  When building blocks are logically separated and structured, applying the principle of least privilege 
to each component is much more straightforward than it would be otherwise.  Smaller components should by and 
large require less privilege than the complete system.  Does this component involve pre-processed training data 
that will directly impact system learning?  Hmm, better secure those data!

The basic idea behind compartmentalization is to minimize the amount of damage that can be done to a system 
by breaking up the system into a number of units and isolating processes or data that carry security privilege. 
This same principle explains why submarines are built with many different chambers, each separately sealed. If a 
breach in the hull causes one chamber to fill with water, the other chambers are not affected. The rest of the ship 
can keep its integrity, and people can survive by making their way to parts of the submarine that are not flooded. 
Unfortunately, this design doesn’t always work, as the Kursk disaster of the year 2000 showed.

Some ML systems make use of declarative pipelines as an organizational metaphor.  Keep in mind that logical 
pipeline boundaries often make poor trust boundaries when considered from a security perspective.  Though 
logical boundaries are very helpful from an engineering perspective, if you want to create a trust boundary that 
must be done as an explicit and separate exercise.   

Likewise, note that containers are not always the same thing as conceptual components of the sort we have 
identified in this work.  When you are working on compartmentalization, separation at the logical and data level 
is what you should be after.  In many container models used commonly for ML, everything ends up in one large 
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container without internal trust boundaries.  Compartmentalization for security requires more separation of 
concerns.

Another challenge with security and compartmentalization comes when it is time to consider the system as a whole.  
As we’ve seen in our generic ML system here, data flow between components, and sometimes those data are 
security sensitive.  When implementing an ML system, considering component risks is a good start, but don’t forget 
to think through the risks of the system as a whole.  Harkening back to the principle of least privilege, don’t forget 
to apply the same sort of thinking to the system as a whole after you have completed working on the components.

Principle 6: Keep It Simple
Keep It Simple, Stupid (often spelled out KISS) is good advice when it comes to security. Complex software 
(including most ML software) is at much greater risk of being inadequately implemented or poorly designed than 
simple software is, causing serious security challenges. Keeping software simple is necessary to avoid problems 
related to efficiency, maintainability, and of course, security.

Machine Learning seems to defy KISS by its very nature. ML models involve complicated mathematics that is often 
poorly understood by implementers. ML frequently relies on huge amounts of data that can’t possibly be fully 
understood and vetted by system engineers. As a result, many ML systems are vulnerable to numerous attacks 
arising from complexity. It is important for implementers of ML systems to recognize the drawbacks of using 
complicated classes of ML algorithms and to build security controls around them. Adding controls to an already 
complicated system may seem to run counter to our simplicity goal, but sometimes security demands more. 
Striking a balance between achieving defense-in-depth and simplicity, for example, is a tricky task.

KISS should help inform ML algorithm selection as well as ensemble versus simple algorithm selection. What makes 
an adequate approach varies according to the goals and requirements of the system, yet there are often multiple 
choices. When such a choice needs to be made, it is important to consider not only the accuracy claims made 
by designers of the algorithm, but also how well the algorithm itself is understood by engineers and the broader 
research community. If the engineers developing the ML system don’t really deeply understand the underlying 
algorithm they are using, they are more likely to miss security problems that arise during operations. This doesn’t 
necessarily mean that the latest and greatest algorithms can’t be used, but rather that engineers need to be 
cognizant of the amount of time and effort it takes to understand and then build upon every complex system. 

Principle 7: Promote Privacy
Privacy is tricky even when ML is not involved.  ML makes things even trickier by in some sense re-representing 
sensitive and/or confidential data inside of the machine.  This makes the original data “invisible” (at least to some 
users), but remember that the data are still in some sense “in there somewhere.”  So, for example, if you train up 
a classifier on sensitive medical data and you don’t consider what will happen when an attacker tries to get those 
data back out through a set of sophisticated queries, you may be putting patients at risk.

When it comes to sensitive data, one promising approach in privacy-preserving ML is differential privacy.34:abadi 
The idea behind differential privacy is to set up privacy restrictions that, for example, guarantee that an individual 
patient’s private medical data never has too much influence on a dataset or on a trained ML system.  The idea is to 
“hide in plain sight” with a goal of ensuring that anything that can be learned about an individual from the released 
information, can also be learned without that individual’s data being included.  An algorithm is differentially private 
if an observer examining the output is not able to determine whether a specific individual’s information was used 
in the computation.  Differential privacy can be achieved through the use of random noise that is generated 
according to a chosen distribution and is used to perturb a true answer.  Somewhat counterintuitively, because 
of its use of noise, differential privacy can also be used to combat overfitting in some ML situations.  Differential 
privacy is a reasonably promising line of research that can in some cases provide for privacy protection.
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Privacy also applies to the behavior of a trained-up ML system in operation.  We’ve discussed the tradeoffs 
associated with providing (or not providing) confidence scores.  Sometimes that’s a great idea, and sometimes it’s 
not. Figuring out the impact on system security that providing confidence scores will have is another decision that 
should be explicitly considered and documented.

 In short, you will do well to spend some cycles thinking about privacy in your ML system. If you are doing 
ML on sensitive data, you must take privacy risks seriously, and know that there are no magic solutions. (That is, 
if you are training a model on sensitive data to do something useful, that model must by its very nature reveal 
something about its training data.)

Principle 8: Remember That Hiding Secrets Is Hard
Security is often about keeping secrets. Users don’t want their personal data leaked. Keys must be kept secret to 
avoid eavesdropping and tampering. Top-secret algorithms need to be protected from competitors. These kinds of 
requirements are almost always high on the list, but turn out to be far more difficult to meet than the average user 
may suspect.

ML system engineers may want to keep the intricacies of their system secret, including the algorithm and model 
used, hyperparameter and configuration values, and other details concerning how the system trains and performs. 
Maintaining a level of secrecy is a sound strategy for improving the security of the system, but it should not be the 
only mechanism. 

Past research in transfer learning has demonstrated the ability for new ML systems to be trained from existing ones. 
If transfer learning is known to have been applied, it may facilitate extraction of the proprietary layers trained “on 
top” of the base model. Even when the base model is not known, distillation attacks allow an attacker to copy 
the possibly proprietary behavior of a model using only the ability to query the ML system externally.  As a result, 
maintaining the secrecy of the system’s design requires more than simply not making the system public knowledge.

A chief concern for ML systems is protecting the confidentiality of training data. Some may attempt to “anonymize” 
the data used and consider that sufficient. As the government of Australia discovered in 2017, great care must be 
taken in determining that the data cannot be deanonymized.35:culnane Neural networks similarly provide a layer of 
anonymization by transforming confidential information into weights, but even those weights can be vulnerable to 
advanced information extraction techniques. It’s up to system engineers to identify the risks inherent in their system 
and design protection mechanisms that minimize security exposure. 

Keeping secrets is hard, and it is almost always a source of security risk.

Principle 9: Be Reluctant to Trust
ML systems rely on a number of possibly untrusted, external sources for both their data and their computation. 
Let’s take on data first. Mechanisms used to collect and process data for training and evaluation make an obvious 
target. Of course, ML engineers need to get their data somehow, and this necessarily invokes the question of trust. 
How does an ML system know it can trust the data it’s being fed? And, more generally, what can the system do to 
evaluate the collector’s trustworthiness? Blindly trusting sources of information would expose the system to security 
risks and must be avoided. 

Next, let’s turn to external sources of computation. External tools such as TensorFlow, Kubeflow, and pip can be 
evaluated based on the security expertise of their engineers, time-proven resilience to attacks, and their own 
reliance on further external tools, among other metrics. Nonetheless, it would be a mistake to assume that any 
external tool is infallible. Systems need to extend as little trust as possible, in the spirit of compartmentalization, to 
minimize the capabilities of threats operating through external tools. 

It can help to think of the various components of an ML system as extending trust to one another; dataset assembly 
could trust the data collectors’ organization of the data, or it could build safeguards to ensure normalization. The 
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inference algorithm could trust the model’s obfuscation of training data, or it could avoid responding to queries 
that are designed to extract sensitive information. Sometimes it’s more practical to trust certain properties of 
the data, or various components, but in the interests of secure design only a minimum amount of trust should 
be afforded. Building more security into each component makes attacks much more difficult to successfully 
orchestrate.

Principle 10: Use Your Community Resources
Community resources can be a double-edged sword; on the one hand, systems that have faced public scrutiny can 
benefit from the collective effort to break them. But nefarious individuals aren’t interested in publicizing the flaws 
they identify in open systems, and even large communities of developers have trouble resolving all of the flaws 
in such systems. Relying on publicly available information can expose your own system to risks, particularly if an 
attacker is able to identify similarities between your system and public ones.  

Transfer learning is a particularly relevant issue to ML systems. While transfer learning has demonstrated success 
in applying the learned knowledge of an ML system to other problems, knowledge of the base model can 
sometimes be used to attack the student.28:wang In a more general sense, the use of publicly available models and 
hyperparameters could expose ML systems to particular attacks. How do engineers know that a model they use 
wasn’t deliberately made public for this very purpose?  Recall our discussion of “Trojan models” from the attack 
taxonomy section above.

Public datasets used to train ML algorithms are another important concern. Engineers need to take care to 
validate the authenticity and quality of any public datasets they use, especially when that data could have been 
manipulated by unknown parties. 

At the core of these concerns is the matter of trust; if the community can be trusted to effectively promote the 
security of their tools, models, and data, then community resources can be hesitantly used. Otherwise, it would 
be better to avoid exposing systems to unnecessary risk. After all, security problems in widely-used open-source 
projects have been known to persist for years, and in some cases decades, before the community finally took 
notice.

Putting this Risk Analysis to Work
This document presents a basic architectural risk analysis and a set of 78 specific risks associated with a generic ML 
system. We organize the risks by common component and also include some system-wide risks. These risk analysis 
results are meant to help ML systems engineers in securing their own particular ML systems.

In our view ML systems engineers can devise and field a more secure ML system by carefully considering the risks 
in this document while designing, implementing, and fielding their own specific ML system. In security, the devil 
is in the details, and we attempt to provide as much detail as possible regarding ML security risks and some basic 
controls. 

We have also included a treatment of security principles as adapted in Building Secure Software and originally 
published in 1972 by Saltzer and Shroeder.1:viega, 3:saltzer This treatment can help provide an important perspective on 
security engineering for researchers working in ML.
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